The race towards green energy has faced a significant hurdle recently. According to Clean Energy Associates (CEA), approximately 25% of battery storage systems worldwide suffer from defects related to fire detection and suppression. This revelation poses a potential setback to President Biden’s ambitious Green Energy Agenda.
Instances of lithium-ion battery fires in energy storage systems are rare but carry significant risks when they do occur. The Australian Tesla Megapack battery facility and the notorious ‘Big Bessie’ battery fire serve as reminders of these dangers. However, data from the Electric Power Research Institute shows a declining rate of such incidents in recent years.
To counter these risks, safety innovations are being developed. Modular systems and enhanced manufacturing standards aim to improve battery safety. Additionally, startups are exploring alternative battery chemistries to minimize fire hazards in energy storage systems.
The real-world implications of these high defect rates are evident in the Illinois BESS Project. This battery energy storage system project, deployed in 2018, seeks damages of at least $10 million from LG Energy Solution. Self-combusting batteries supplied by LG caused extensive damage and hazardous conditions. The project has been offline multiple times and remains so, highlighting the severity of these defects.
The integration process for battery storage systems, which requires substantial manual labor and intricate systems, is a primary contributor to these malfunctions. As the Biden administration pushes forward with its green energy agenda, relying on battery storage systems for renewable energy and electric vehicles, these findings emphasize the challenges and risks associated with high defect rates.
This complex issue combines technological innovation, environmental conservation, and economic considerations. As we strive towards a greener future, addressing battery storage system defects becomes not merely a technical challenge but also a critical step in our journey towards sustainable energy.
λ Ήμμλμ§λ‘μ μ νμ μ΅κ·Ό μ€μν μ₯μ λ¬Όμ μ§λ©΄ν΄ μλ€. μ²μ μλμ§νν(CEA)μ λ°λ₯΄λ©΄ μ μΈκ³ λ°°ν°λ¦¬ μ μ₯ μμ€ν μ μ½ 25%κ° νμ¬ νμ§ λ° μ΅μ μ κ΄λ ¨λ κ²°ν¨μ κ°μ§κ³ μλ€κ³ νλ€. μ΄ λ°κ²¬μ λ°μ΄λ λν΅λ Ήμ μΌμ¬μ°¬ λ Ήμ μλμ§ κ³νμ μ μ¬μ μΈ λ·κ±Έμμ§μ μΌμΌν¬ μ μλ μν©μ΄λ€.
λ°°ν°λ¦¬ μ μ₯ μμ€ν μμ λ¦¬ν¬ μ΄μ¨ λ°°ν°λ¦¬ νμ¬ μ¬λ‘λ λλ¬Όμ§λ§, λ°μ μ μ€λν μνμ μΌκΈ°νλ€. μ€μ€νΈλ μΌλ¦¬μμ ν μ¬λΌ λ©κ°ν© λ°°ν°λ¦¬ μμ€κ³Ό μ λͺ λμ ‘λΉ λΉ μ’ λ°°ν°λ¦¬ νμ¬λ μ΄λ¬ν μνμ±μ μκΈ°μν¨λ€. κ·Έλ¬λ μ κΈ°λ ₯ μ°κ΅¬μμ λ°μ΄ν°λ μ΅κ·Ό λͺ λ κ° μ΄λ¬ν μ¬κ³ λ°μλ₯ μ΄ κ°μνκ³ μμμ 보μ¬μ€λ€.
μ΄λ¬ν μνμ λλΉνμ¬ μμ νμ μ΄ μ§νλκ³ μλ€. λͺ¨λμ μμ€ν κ³Ό ν₯μλ μ μ‘° κΈ°μ€μ λ°°ν°λ¦¬ μμ μ ν₯μμν€κΈ° μν΄ κ°λ°λμλ€. λν μ€ννΈμ λ€μ μλμ§ μ μ₯ μμ€ν μμ νμ¬ μνμ μ΅μννκΈ° μν΄ λ체 λ°°ν°λ¦¬ ννμ νꡬνκ³ μλ€.
λμ κ²°ν¨λ₯ μ μ€μ μν₯μ μΌλ¦¬λ Έμ΄ BESS νλ‘μ νΈμμ λͺ λ°±νκ² λλ¬λλ€. 2018λ μ λμ λ μ΄ λ°°ν°λ¦¬ μλμ§ μ μ₯ μμ€ν νλ‘μ νΈλ LG μλμ§ μ루μ μΌλ‘λΆν° μ΅μ 1,000λ§ λ¬λ¬μ μν΄λ°°μμ μΆκ΅¬νκ³ μλ€. LGμ μ λ°λ μμ°λ°ν λ°°ν°λ¦¬λ‘ μΈν΄ λ§μ νΌν΄μ μνν μν©μ΄ λ°μνλ€. μ΄ νλ‘μ νΈλ μ¬λ¬ μ°¨λ‘ μ€νλΌμΈ μνμ΄λ©°, μ΄ κ²°ν¨μ μ¬κ°μ±μ κ°μ‘°νκ³ μλ€.
λ°°ν°λ¦¬ μ μ₯ μμ€ν μ ν΅ν© κ³Όμ μ λ§μ μΈλ ₯κ³Ό μ κ΅ν μμ€ν μ΄ νμνμ¬ μ΄λ¬ν κ²°ν¨μ μ£Όλ μμΈμ΄λ€. λ°μ΄λ νμ λΆκ° λ Ήμ μλμ§ κ³νμ μΆμ§νλ©΄μ, μ¬μ μλμ§μ μ κΈ° μλμ°¨μ λν λ°°ν°λ¦¬ μ μ₯ μμ€ν μ μμ‘΄νλ κ²μ μ΄λ¬ν κ²°ν¨λ₯ κ³Ό κ΄λ ¨λ λμ κ³Ό μνμ κ°μ‘°νλ€.
μ΄ λ³΅μ‘ν λ¬Έμ λ κΈ°μ μ νμ , νκ²½ λ³΄νΈ λ° κ²½μ μ κ³ λ € μ¬νμ κ²°ν©ν κ²μ΄λ€. μ°λ¦¬κ° λμ± λ Ήμ λ―Έλλ₯Ό ν₯ν΄ λμκ°μ λ°λΌ λ°°ν°λ¦¬ μ μ₯ μμ€ν μ κ²°ν¨μ λμ²νλ κ²μ λ¨μν κΈ°μ μ μΈ λμ λΏ μλλΌ, μ§μ κ°λ₯ν μλμ§λ‘μ μ¬μ μμ μ€μν λ¨κ³κ° λλ κ²μ΄λ€.